Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
S skyviewfund
  • Project overview
    • Project overview
    • Details
    • Activity
  • Issues 1
    • Issues 1
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Incidents
    • Environments
  • Packages & Registries
    • Packages & Registries
    • Package Registry
  • Analytics
    • Analytics
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
Collapse sidebar
  • Penney Gil
  • skyviewfund
  • Issues
  • #1

Closed
Open
Created Feb 02, 2025 by Penney Gil@penneygil1716Maintainer

Artificial General Intelligence


Artificial general intelligence (AGI) is a type of synthetic intelligence (AI) that matches or surpasses human cognitive abilities throughout a large variety of cognitive jobs. This contrasts with narrow AI, which is restricted to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that considerably exceeds human cognitive capabilities. AGI is thought about among the meanings of strong AI.

Creating AGI is a primary goal of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 survey recognized 72 active AGI research study and development jobs throughout 37 countries. [4]
The timeline for accomplishing AGI remains a subject of ongoing argument amongst scientists and professionals. As of 2023, some argue that it might be possible in years or decades; others preserve it may take a century or longer; a minority think it may never be achieved; and another minority claims that it is already here. [5] [6] Notable AI scientist Geoffrey Hinton has expressed issues about the quick progress towards AGI, suggesting it might be accomplished quicker than numerous expect. [7]
There is dispute on the specific meaning of AGI and relating to whether modern big language models (LLMs) such as GPT-4 are early forms of AGI. [8] AGI is a common subject in sci-fi and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many specialists on AI have mentioned that alleviating the threat of human termination postured by AGI should be a worldwide top priority. [14] [15] Others find the development of AGI to be too remote to present such a threat. [16] [17]
Terminology

AGI is also called strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or basic smart action. [21]
Some scholastic sources book the term "strong AI" for computer programs that experience life or awareness. [a] In contrast, weak AI (or narrow AI) has the ability to resolve one particular issue however lacks general cognitive capabilities. [22] [19] Some academic sources utilize "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the same sense as people. [a]
Related principles consist of artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a hypothetical type of AGI that is a lot more usually intelligent than human beings, [23] while the idea of transformative AI associates with AI having a large influence on society, for instance, comparable to the farming or industrial revolution. [24]
A framework for classifying AGI in levels was proposed in 2023 by Google DeepMind researchers. They specify 5 levels of AGI: emerging, skilled, expert, virtuoso, and superhuman. For instance, a qualified AGI is specified as an AI that surpasses 50% of proficient adults in a vast array of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise specified but with a limit of 100%. They consider large language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics

Various popular meanings of intelligence have been proposed. Among the leading proposals is the Turing test. However, there are other well-known meanings, and some researchers disagree with the more popular techniques. [b]
Intelligence traits

Researchers usually hold that intelligence is needed to do all of the following: [27]
factor, usage strategy, resolve puzzles, and make judgments under uncertainty represent knowledge, including good sense understanding plan discover

  • communicate in natural language
  • if essential, incorporate these abilities in completion of any offered goal

Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and decision making) think about additional characteristics such as imagination (the capability to form unique psychological images and principles) [28] and autonomy. [29]
Computer-based systems that display much of these abilities exist (e.g. see computational creativity, automated reasoning, choice support group, robot, evolutionary computation, intelligent representative). There is dispute about whether contemporary AI systems have them to an appropriate degree.

Physical characteristics

Other capabilities are considered desirable in intelligent systems, as they may affect intelligence or help in its expression. These include: [30]
- the ability to sense (e.g. see, hear, and so on), and - the capability to act (e.g. move and control items, change area to check out, and so on).
This includes the ability to identify and respond to risk. [31]
Although the ability to sense (e.g. see, hear, and so on) and the ability to act (e.g. relocation and manipulate items, modification location to check out, and so on) can be desirable for some intelligent systems, [30] these physical capabilities are not strictly required for an entity to qualify as AGI-particularly under the thesis that large language designs (LLMs) might currently be or end up being AGI. Even from a less positive point of view on LLMs, there is no company requirement for an AGI to have a human-like kind; being a silicon-based computational system is adequate, offered it can process input (language) from the external world in place of human senses. This interpretation aligns with the understanding that AGI has never ever been proscribed a particular physical embodiment and thus does not demand a capacity for mobility or traditional "eyes and ears". [32]
Tests for human-level AGI

Several tests implied to verify human-level AGI have been thought about, consisting of: [33] [34]
The concept of the test is that the device has to try and pretend to be a man, by addressing questions put to it, and it will only pass if the pretence is fairly convincing. A substantial portion of a jury, who need to not be professional about machines, need to be taken in by the pretence. [37]
AI-complete issues

A problem is informally called "AI-complete" or "AI-hard" if it is believed that in order to resolve it, one would require to implement AGI, because the option is beyond the capabilities of a purpose-specific algorithm. [47]
There are lots of issues that have actually been conjectured to require general intelligence to resolve along with humans. Examples consist of computer system vision, natural language understanding, and handling unforeseen scenarios while resolving any real-world problem. [48] Even a specific job like translation needs a maker to read and compose in both languages, follow the author's argument (factor), understand the context (understanding), and consistently reproduce the author's initial intent (social intelligence). All of these problems need to be solved at the same time in order to reach human-level machine performance.

However, a lot of these tasks can now be carried out by modern big language models. According to Stanford University's 2024 AI index, AI has reached human-level performance on numerous criteria for checking out comprehension and visual thinking. [49]
History

Classical AI

Modern AI research study started in the mid-1950s. [50] The very first generation of AI researchers were encouraged that artificial general intelligence was possible which it would exist in simply a few years. [51] AI leader Herbert A. Simon wrote in 1965: "machines will be capable, within twenty years, of doing any work a male can do." [52]
Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they might create by the year 2001. AI leader Marvin Minsky was a specialist [53] on the job of making HAL 9000 as realistic as possible according to the agreement predictions of the time. He stated in 1967, "Within a generation ... the issue of producing 'expert system' will substantially be resolved". [54]
Several classical AI jobs, such as Doug Lenat's Cyc task (that started in 1984), and Allen Newell's Soar job, were directed at AGI.

However, in the early 1970s, it became obvious that scientists had grossly undervalued the problem of the project. Funding agencies ended up being doubtful of AGI and put researchers under increasing pressure to produce beneficial "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI goals like "bring on a table talk". [58] In response to this and the success of specialist systems, both industry and government pumped money into the field. [56] [59] However, self-confidence in AI amazingly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never ever fulfilled. [60] For wiki.tld-wars.space the 2nd time in 20 years, AI scientists who predicted the imminent achievement of AGI had actually been mistaken. By the 1990s, AI scientists had a track record for making vain promises. They became hesitant to make predictions at all [d] and avoided mention of "human level" expert system for fear of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research study

In the 1990s and early 21st century, mainstream AI achieved commercial success and academic respectability by focusing on particular sub-problems where AI can produce proven results and business applications, such as speech recognition and recommendation algorithms. [63] These "applied AI" systems are now used extensively throughout the innovation industry, and research study in this vein is heavily moneyed in both academic community and industry. As of 2018 [upgrade], development in this field was considered an emerging pattern, and a mature stage was anticipated to be reached in more than 10 years. [64]
At the millenium, lots of traditional AI researchers [65] hoped that strong AI could be developed by combining programs that fix numerous sub-problems. Hans Moravec wrote in 1988:

I am positive that this bottom-up path to expert system will one day fulfill the traditional top-down path majority method, prepared to provide the real-world skills and the commonsense understanding that has been so frustratingly evasive in reasoning programs. Fully smart makers will result when the metaphorical golden spike is driven unifying the 2 efforts. [65]
However, even at the time, this was challenged. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by stating:

The expectation has typically been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way meet "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper are legitimate, then this expectation is hopelessly modular and there is actually only one practical path from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we ought to even try to reach such a level, because it looks as if getting there would just amount to uprooting our signs from their intrinsic meanings (thus simply lowering ourselves to the practical equivalent of a programmable computer system). [66]
Modern artificial general intelligence research

The term "synthetic general intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the implications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative increases "the ability to satisfy objectives in a broad variety of environments". [68] This type of AGI, identified by the capability to increase a mathematical definition of intelligence instead of display human-like behaviour, [69] was likewise called universal synthetic intelligence. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The first summer season school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, organized by Lex Fridman and featuring a variety of guest speakers.

As of 2023 [upgrade], a little number of computer researchers are active in AGI research, and numerous contribute to a series of AGI conferences. However, increasingly more scientists are interested in open-ended knowing, [76] [77] which is the idea of enabling AI to continually learn and innovate like humans do.

Feasibility

Since 2023, the development and potential accomplishment of AGI stays a topic of extreme debate within the AI community. While standard agreement held that AGI was a distant objective, current improvements have led some scientists and industry figures to declare that early kinds of AGI may already exist. [78] AI leader Herbert A. Simon speculated in 1965 that "makers will be capable, within twenty years, of doing any work a man can do". This forecast failed to come real. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century due to the fact that it would require "unforeseeable and essentially unpredictable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf in between modern-day computing and human-level artificial intelligence is as large as the gulf between present area flight and practical faster-than-light spaceflight. [80]
A further challenge is the lack of clarity in defining what intelligence requires. Does it require awareness? Must it show the capability to set objectives along with pursue them? Is it simply a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are facilities such as planning, reasoning, and causal understanding needed? Does intelligence need explicitly reproducing the brain and its particular faculties? Does it require feelings? [81]
Most AI scientists think strong AI can be accomplished in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of attaining strong AI. [82] [83] John McCarthy is among those who think human-level AI will be achieved, but that today level of progress is such that a date can not properly be forecasted. [84] AI experts' views on the expediency of AGI wax and subside. Four surveys performed in 2012 and 2013 recommended that the mean price quote among professionals for when they would be 50% confident AGI would show up was 2040 to 2050, depending on the poll, with the mean being 2081. Of the specialists, 16.5% responded to with "never" when asked the exact same concern however with a 90% self-confidence rather. [85] [86] Further existing AGI development factors to consider can be found above Tests for validating human-level AGI.

A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year amount of time there is a strong bias towards anticipating the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They examined 95 forecasts made in between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft researchers released an in-depth evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, we believe that it could reasonably be seen as an early (yet still insufficient) variation of a synthetic basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outshines 99% of humans on the Torrance tests of innovative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a considerable level of general intelligence has actually already been attained with frontier designs. They wrote that hesitation to this view originates from 4 primary reasons: a "healthy apprehension about metrics for AGI", an "ideological dedication to alternative AI theories or methods", a "commitment to human (or biological) exceptionalism", or a "concern about the economic implications of AGI". [91]
2023 likewise marked the introduction of large multimodal models (large language designs capable of processing or generating several techniques such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the first of a series of models that "invest more time believing before they respond". According to Mira Murati, this capability to think before responding represents a brand-new, extra paradigm. It enhances design outputs by investing more computing power when producing the response, whereas the design scaling paradigm improves outputs by increasing the model size, training information and training calculate power. [93] [94]
An OpenAI employee, Vahid Kazemi, claimed in 2024 that the company had accomplished AGI, stating, "In my opinion, we have actually currently attained AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "better than the majority of people at most jobs." He likewise resolved criticisms that big language models (LLMs) simply follow predefined patterns, comparing their knowing procedure to the clinical technique of observing, assuming, and validating. These statements have stimulated argument, as they depend on a broad and non-traditional definition of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models demonstrate exceptional flexibility, they may not completely meet this standard. Notably, Kazemi's remarks came soon after OpenAI removed "AGI" from the regards to its partnership with Microsoft, triggering speculation about the business's strategic intentions. [95]
Timescales

Progress in expert system has traditionally gone through periods of rapid development separated by periods when progress appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software or both to develop area for further progress. [82] [98] [99] For example, the hardware readily available in the twentieth century was not enough to implement deep learning, which requires great deals of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel says that quotes of the time needed before a really versatile AGI is developed differ from ten years to over a century. Since 2007 [update], the agreement in the AGI research study community appeared to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI scientists have actually offered a wide variety of viewpoints on whether progress will be this quick. A 2012 meta-analysis of 95 such viewpoints found a predisposition towards anticipating that the start of AGI would happen within 16-26 years for modern and historic predictions alike. That paper has actually been slammed for how it categorized opinions as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competitors with a top-5 test mistake rate of 15.3%, considerably better than the second-best entry's rate of 26.3% (the standard technique utilized a weighted sum of scores from different pre-defined classifiers). [105] AlexNet was concerned as the preliminary ground-breaker of the present deep knowing wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on publicly available and freely available weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds around to a six-year-old kid in very first grade. An adult pertains to about 100 usually. Similar tests were brought out in 2014, with the IQ score reaching a maximum value of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language model efficient in carrying out many diverse tasks without specific training. According to Gary Grossman in a VentureBeat short article, while there is agreement that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be classified as a narrow AI system. [108]
In the same year, Jason Rohrer used his GPT-3 account to establish a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI requested for modifications to the chatbot to adhere to their security standards; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system capable of carrying out more than 600 various jobs. [110]
In 2023, Microsoft Research released a research study on an early variation of OpenAI's GPT-4, competing that it showed more general intelligence than previous AI designs and demonstrated human-level efficiency in tasks spanning multiple domains, such as mathematics, coding, and law. This research study stimulated an argument on whether GPT-4 might be considered an early, insufficient variation of synthetic basic intelligence, stressing the need for additional expedition and evaluation of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton stated that: [112]
The idea that this things might actually get smarter than individuals - a couple of individuals believed that, [...] But many people believed it was way off. And I believed it was way off. I thought it was 30 to 50 years or perhaps longer away. Obviously, I no longer believe that.

In May 2023, Demis Hassabis likewise said that "The progress in the last couple of years has actually been quite incredible", and that he sees no factor why it would slow down, anticipating AGI within a years and even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within 5 years, AI would be capable of passing any test at least along with humans. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI employee, approximated AGI by 2027 to be "noticeably possible". [115]
Whole brain emulation

While the advancement of transformer designs like in ChatGPT is considered the most appealing course to AGI, [116] [117] entire brain emulation can function as an alternative approach. With whole brain simulation, a brain design is constructed by scanning and mapping a biological brain in detail, and after that copying and imitating it on a computer system or another computational gadget. The simulation design should be sufficiently devoted to the original, so that it behaves in virtually the exact same way as the original brain. [118] Whole brain emulation is a kind of brain simulation that is talked about in computational neuroscience and neuroinformatics, and for medical research study purposes. It has actually been discussed in artificial intelligence research [103] as an approach to strong AI. Neuroimaging technologies that could deliver the required in-depth understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of adequate quality will appear on a comparable timescale to the computing power needed to emulate it.

Early approximates

For low-level brain simulation, an extremely powerful cluster of computer systems or GPUs would be required, given the huge amount of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on typical 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number declines with age, supporting by adulthood. Estimates vary for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based upon a basic switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at different price quotes for the hardware required to equate to the human brain and adopted a figure of 1016 computations per second (cps). [e] (For contrast, if a "calculation" was comparable to one "floating-point operation" - a step used to rate present supercomputers - then 1016 "calculations" would be equivalent to 10 petaFLOPS, accomplished in 2011, while 1018 was attained in 2022.) He used this figure to predict the necessary hardware would be readily available sometime between 2015 and 2025, if the exponential growth in computer power at the time of writing continued.

Current research study

The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has established an especially detailed and openly available atlas of the human brain. [124] In 2023, researchers from Duke University performed a high-resolution scan of a mouse brain.

Criticisms of simulation-based approaches

The artificial neuron design presumed by Kurzweil and used in many present synthetic neural network applications is basic compared with biological neurons. A brain simulation would likely have to catch the detailed cellular behaviour of biological neurons, currently understood just in broad outline. The overhead presented by full modeling of the biological, chemical, and physical details of neural behaviour (particularly on a molecular scale) would require computational powers several orders of magnitude larger than Kurzweil's price quote. In addition, the estimates do not account for glial cells, which are understood to play a role in cognitive processes. [125]
An essential criticism of the simulated brain approach originates from embodied cognition theory which asserts that human embodiment is a vital aspect of human intelligence and is necessary to ground significance. [126] [127] If this theory is right, any fully practical brain model will need to incorporate more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an alternative, but it is unidentified whether this would suffice.

Philosophical viewpoint

"Strong AI" as defined in viewpoint

In 1980, thinker John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference between 2 hypotheses about expert system: [f]
Strong AI hypothesis: An artificial intelligence system can have "a mind" and "consciousness". Weak AI hypothesis: An expert system system can (just) imitate it thinks and has a mind and consciousness.
The first one he called "strong" since it makes a more powerful statement: it presumes something unique has actually occurred to the maker that surpasses those abilities that we can evaluate. The behaviour of a "weak AI" machine would be precisely similar to a "strong AI" machine, but the latter would also have subjective mindful experience. This use is likewise common in academic AI research study and textbooks. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil use the term "strong AI" to indicate "human level synthetic general intelligence". [102] This is not the like Searle's strong AI, unless it is presumed that awareness is essential for human-level AGI. Academic philosophers such as Searle do not think that is the case, and to most artificial intelligence scientists the concern is out-of-scope. [130]
Mainstream AI is most thinking about how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to understand if it in fact has mind - indeed, there would be no chance to inform. For AI research, Searle's "weak AI hypothesis" is equivalent to the declaration "artificial basic intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for given, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are 2 different things.

Consciousness

Consciousness can have numerous significances, and some elements play significant roles in sci-fi and the principles of synthetic intelligence:

Sentience (or "phenomenal awareness"): The capability to "feel" understandings or emotions subjectively, as opposed to the ability to factor about perceptions. Some thinkers, such as David Chalmers, utilize the term "consciousness" to refer specifically to sensational consciousness, which is roughly equivalent to sentience. [132] Determining why and how subjective experience develops is referred to as the hard problem of consciousness. [133] Thomas Nagel described in 1974 that it "feels like" something to be conscious. If we are not conscious, then it does not feel like anything. Nagel uses the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had actually attained life, though this claim was extensively contested by other experts. [135]
Self-awareness: To have mindful awareness of oneself as a different person, particularly to be purposely knowledgeable about one's own ideas. This is opposed to merely being the "subject of one's thought"-an operating system or debugger has the ability to be "aware of itself" (that is, to represent itself in the exact same method it represents everything else)-however this is not what people normally imply when they use the term "self-awareness". [g]
These characteristics have a moral dimension. AI sentience would generate issues of well-being and legal defense, similarly to animals. [136] Other elements of consciousness associated to cognitive abilities are also appropriate to the principle of AI rights. [137] Determining how to incorporate advanced AI with existing legal and social structures is an emergent problem. [138]
Benefits

AGI might have a variety of applications. If oriented towards such objectives, AGI might assist mitigate various problems on the planet such as hunger, hardship and health issues. [139]
AGI might enhance performance and performance in most tasks. For example, in public health, AGI might accelerate medical research study, notably versus cancer. [140] It might look after the elderly, [141] and equalize access to rapid, top quality medical diagnostics. It might provide fun, inexpensive and personalized education. [141] The requirement to work to subsist could become outdated if the wealth produced is correctly rearranged. [141] [142] This also raises the concern of the place of humans in a drastically automated society.

AGI might likewise help to make reasonable decisions, and to prepare for and prevent catastrophes. It could likewise help to gain the benefits of potentially disastrous technologies such as nanotechnology or environment engineering, while avoiding the associated threats. [143] If an AGI's main goal is to avoid existential disasters such as human extinction (which could be tough if the Vulnerable World Hypothesis turns out to be true), [144] it could take steps to considerably minimize the dangers [143] while decreasing the impact of these steps on our quality of life.

Risks

Existential dangers

AGI might represent multiple types of existential risk, which are risks that threaten "the early extinction of Earth-originating smart life or the long-term and drastic damage of its capacity for desirable future advancement". [145] The threat of human termination from AGI has actually been the topic of lots of debates, however there is also the possibility that the development of AGI would cause a completely problematic future. Notably, it might be used to spread out and protect the set of worths of whoever develops it. If humankind still has moral blind spots comparable to slavery in the past, AGI may irreversibly entrench it, preventing ethical development. [146] Furthermore, AGI might help with mass monitoring and indoctrination, which could be utilized to create a steady repressive around the world totalitarian routine. [147] [148] There is also a risk for the machines themselves. If makers that are sentient or otherwise worthy of moral factor to consider are mass produced in the future, participating in a civilizational path that forever neglects their welfare and interests could be an existential disaster. [149] [150] Considering just how much AGI might improve mankind's future and assistance minimize other existential risks, Toby Ord calls these existential risks "an argument for proceeding with due care", not for "deserting AI". [147]
Risk of loss of control and human extinction

The thesis that AI poses an existential risk for people, and that this threat needs more attention, is controversial however has actually been backed in 2023 by numerous public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized extensive indifference:

So, dealing with possible futures of incalculable advantages and risks, the specialists are undoubtedly doing everything possible to ensure the best outcome, right? Wrong. If a remarkable alien civilisation sent us a message stating, 'We'll show up in a few years,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]
The potential fate of humanity has actually often been compared to the fate of gorillas threatened by human activities. The contrast states that higher intelligence allowed humanity to control gorillas, which are now vulnerable in ways that they could not have actually prepared for. As a result, the gorilla has become a threatened species, not out of malice, however just as a collateral damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate humanity which we should be mindful not to anthropomorphize them and interpret their intents as we would for humans. He said that individuals won't be "clever adequate to create super-intelligent devices, yet unbelievably silly to the point of giving it moronic goals without any safeguards". [155] On the other side, the principle of critical merging recommends that almost whatever their goals, smart agents will have reasons to attempt to survive and get more power as intermediary steps to accomplishing these objectives. Which this does not need having feelings. [156]
Many scholars who are worried about existential threat advocate for more research into fixing the "control problem" to address the concern: what kinds of safeguards, algorithms, or architectures can programmers execute to maximise the probability that their recursively-improving AI would continue to act in a friendly, instead of harmful, way after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which might lead to a race to the bottom of security preventative measures in order to launch products before competitors), [159] and using AI in weapon systems. [160]
The thesis that AI can posture existential risk also has detractors. Skeptics normally state that AGI is not likely in the short-term, or that concerns about AGI sidetrack from other problems connected to current AI. [161] Former Google fraud czar Shuman Ghosemajumder thinks about that for many individuals outside of the innovation industry, existing chatbots and LLMs are already viewed as though they were AGI, resulting in additional misconception and worry. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence changing an illogical belief in a supreme God. [163] Some researchers believe that the interaction projects on AI existential risk by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulative capture and to inflate interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other industry leaders and researchers, released a joint statement asserting that "Mitigating the risk of extinction from AI must be an international top priority alongside other societal-scale risks such as pandemics and nuclear war." [152]
Mass joblessness

Researchers from OpenAI approximated that "80% of the U.S. labor force might have at least 10% of their work jobs impacted by the introduction of LLMs, while around 19% of workers might see a minimum of 50% of their tasks affected". [166] [167] They consider workplace workers to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI could have a better autonomy, capability to make choices, to user interface with other computer system tools, but likewise to manage robotized bodies.

According to Stephen Hawking, the outcome of automation on the quality of life will depend on how the wealth will be rearranged: [142]
Everyone can enjoy a life of glamorous leisure if the machine-produced wealth is shared, or many people can end up miserably bad if the machine-owners successfully lobby against wealth redistribution. So far, the pattern appears to be towards the second choice, with innovation driving ever-increasing inequality

Elon Musk considers that the automation of society will require governments to embrace a universal basic income. [168]
See also

Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain AI result AI security - Research area on making AI safe and useful AI positioning - AI conformance to the intended objective A.I. Rising - 2018 film directed by Lazar Bodroža Artificial intelligence Automated machine learning - Process of automating the application of machine knowing BRAIN Initiative - Collaborative public-private research study effort announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General video game playing - Ability of artificial intelligence to play different video games Generative artificial intelligence - AI system efficient in producing content in response to triggers Human Brain Project - Scientific research job Intelligence amplification - Use of details innovation to enhance human intelligence (IA). Machine principles - Moral behaviours of manufactured devices. Moravec's paradox. Multi-task knowing - Solving several machine learning tasks at the same time. Neural scaling law - Statistical law in machine learning. Outline of expert system - Overview of and topical guide to artificial intelligence. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or form of expert system. Transfer knowing - Machine knowing method. Loebner Prize - Annual AI competition. Hardware for expert system - Hardware specially developed and optimized for synthetic intelligence. Weak artificial intelligence - Form of artificial intelligence.
Notes

^ a b See listed below for the origin of the term "strong AI", and see the academic meaning of "strong AI" and weak AI in the post Chinese room. ^ AI founder John McCarthy composes: "we can not yet identify in basic what kinds of computational procedures we wish to call intelligent. " [26] (For a discussion of some meanings of intelligence utilized by expert system researchers, see viewpoint of expert system.). ^ The Lighthill report specifically criticized AI's "grand goals" and led the taking apart of AI research in England. [55] In the U.S., DARPA ended up being figured out to fund only "mission-oriented direct research study, rather than standard undirected research study". [56] [57] ^ As AI creator John McCarthy writes "it would be an excellent relief to the remainder of the employees in AI if the innovators of new basic formalisms would express their hopes in a more protected kind than has actually often held true." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As specified in a basic AI textbook: "The assertion that makers could possibly act wisely (or, possibly better, act as if they were intelligent) is called the 'weak AI' hypothesis by philosophers, and the assertion that makers that do so are in fact thinking (instead of mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References

^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to perform a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to guarantee that synthetic basic intelligence benefits all of humankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is developing synthetic general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were identified as being active in 2020. ^ a b c "AI timelines: What do experts in synthetic intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI pioneer Geoffrey Hinton stops Google and warns of risk ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can prevent the bad actors from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals stimulates of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you alter changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The real hazard is not AI itself however the way we release it. ^ "Impressed by expert system? Experts state AGI is coming next, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might posture existential risks to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last invention that humanity needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the danger of termination from AI must be an international priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists warn of danger of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from producing machines that can outthink us in basic methods. ^ LeCun, Yann (June 2023). "AGI does not provide an existential danger". Medium. There is no factor to fear AI as an existential threat. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil describes strong AI as "machine intelligence with the complete variety of human intelligence.". ^ "The Age of Expert System: utahsyardsale.com George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is transforming our world - it is on everyone to ensure that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent traits is based upon the topics covered by major AI books, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the way we think: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reevaluated: The idea of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine young boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar exam to AP Biology. Here's a list of challenging tests both AI versions have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's ability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer researchers and software application engineers avoided the term artificial intelligence for worry of being deemed wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of maker intelligence: systemcheck-wiki.de Despite progress in device intelligence, synthetic general intelligence is still a significant difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not turn into a Frankenstein's monster". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general artificial intelligence will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in expert system: A study of skilled viewpoint. In Fundamental concerns of artificial intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, photorum.eclat-mauve.fr and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as clever as Siri - but a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're getting in the AI twilight zone in between narrow and general AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are already seeing an early example of an AGI system in the recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is debatable, but the consensus is that it is not AGI. ... If nothing else, GPT-3 informs us there is a happy medium in between narrow and general AI. ^ Quach, Katyanna. "A designer built an AI chatbot utilizing GPT-3 that assisted a male speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can carry out over 600 jobs, from playing video games to controlling robots", TechCrunch, archived from the initial on 16 June 2022, recovered 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could match human intelligence in 'just a couple of years,' says CEO of Google's primary A.I. research laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI might pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody seems to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study task maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A vast array of views in current research study, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How submitting our minds to a computer system might end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (estimated in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.


^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for interest by the field about why a program acts the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the company's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost outweigh advantages?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Gain from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, dangers, techniques (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York City, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that humans will damage ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security danger' to Australia, Senate query says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the ramifications of expert system - but are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook argument between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The fascinating Facebook debate in between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to catastrophic AGI threat: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report alerts". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over risk posed but expert system can not be overlooked". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring fears over AI, caution researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator states big tech is lying about AI extinction threat". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market impact potential of big language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of employees could see their jobs affected by AI. These are the jobs most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we require universal fundamental income since 'in the future, physical work will be an option'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources

UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Expert System. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic basic intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, retrieved 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, obtained 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Viewpoint, archived from the initial on 17 August 2007, obtained 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Expert System: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The supreme effort is to make computer programs that can solve problems and attain goals in the world in addition to human beings. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, obtained 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Expert System", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, obtained 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York: Oxford University Press, archived from the initial on 25 July 2009, obtained 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, recovered 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, obtained 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading

Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, recovered 4 September 2013 - by means of ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, retrieved 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what might be called "Dyson's Law") that "Any system easy adequate to be understandable will not be complicated enough to act smartly, while any system made complex enough to behave intelligently will be too complicated to understand." (p. 197.) Computer scientist Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead easy foolish. They work, however they work by strength." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, recovered 25 July 2010. Gleick, James, "The Fate of Free Choice" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from devices. For biological animals, reason and purpose originate from acting in the world and experiencing the repercussions. Expert systems - disembodied, strangers to blood, sweat, and tears - have no celebration for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably anticipate that those who intend to get rich from AI are going to have the interests of the rest people close at heart,' ... writes [Gary Marcus] 'We can't rely on governments driven by project financing contributions [from tech business] to push back.' ... Marcus information the needs that residents need to make of their federal governments and the tech business. They consist of transparency on how AI systems work; payment for individuals if their information [are] utilized to train LLMs (large language design) s and the right to grant this usage; and the ability to hold tech companies liable for the damages they cause by getting rid of Section 230, enforcing cash penalites, and passing stricter product liability laws ... Marcus also recommends ... that a brand-new, AI-specific federal company, comparable to the FDA, the FCC, or the FTC, might offer the most robust oversight ... [T] he Fordham law professor demo.qkseo.in Chinmayi Sharma ... suggests ... establish [ing] a professional licensing routine for engineers that would work in a similar method to medical licenses, malpractice matches, and the Hippocratic oath in . 'What if, like medical professionals,' she asks ..., 'AI engineers likewise promised to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in artificial intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has puzzled human beings for decades, exposes the limitations of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competition has exposed that although NLP (natural-language processing) models are capable of extraordinary feats, their capabilities are quite limited by the quantity of context they receive. This [...] might cause [troubles] for scientists who hope to use them to do things such as examine ancient languages. In some cases, there are couple of historical records on long-gone civilizations to act as training information for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to create phony videos indistinguishable from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we imply reasonable videos produced using artificial intelligence that actually trick people, then they hardly exist. The fakes aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in basic, operating in our media as counterfeited evidence. Their function better resembles that of animations, especially smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We must avoid humanizing machine-learning designs utilized in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a device a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the latest, buzziest systems of artificial basic intelligence are stymmied by the usual problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, provided and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead cops to disregard contradictory evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but showed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at jobs that require genuine humanlike reasoning or an understanding of the physical and social world ... ChatGPT appeared unable to reason logically and tried to depend on its large database of ... realities stemmed from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are effective however undependable. Rules-based systems can not deal with circumstances their developers did not anticipate. Learning systems are limited by the data on which they were trained. AI failures have already caused catastrophe. Advanced autopilot features in cars and trucks, although they perform well in some circumstances, have driven automobiles without cautioning into trucks, concrete barriers, and parked cars and trucks. In the wrong scenario, AI systems go from supersmart to superdumb in an instant. When an opponent is trying to manipulate and hack an AI system, the dangers are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by brand-new technologies but depend on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking