Artificial General Intelligence
Artificial general intelligence (AGI) is a type of expert system (AI) that matches or exceeds human cognitive abilities across a wide variety of cognitive tasks. This contrasts with narrow AI, which is restricted to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that considerably goes beyond human cognitive capabilities. AGI is considered among the definitions of strong AI.
Creating AGI is a main goal of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 survey recognized 72 active AGI research study and development tasks throughout 37 nations. [4]
The timeline for accomplishing AGI remains a subject of ongoing argument amongst researchers and experts. Since 2023, some argue that it may be possible in years or decades; others preserve it might take a century or longer; a minority think it may never be attained; and another minority declares that it is already here. [5] [6] Notable AI scientist Geoffrey Hinton has revealed issues about the quick progress towards AGI, recommending it could be accomplished faster than numerous anticipate. [7]
There is debate on the precise meaning of AGI and concerning whether modern big language models (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a common topic in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many professionals on AI have stated that reducing the threat of human extinction presented by AGI ought to be a global priority. [14] [15] Others discover the development of AGI to be too remote to present such a danger. [16] [17]
Terminology
AGI is likewise understood as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level intelligent AI, or basic intelligent action. [21]
Some academic sources book the term "strong AI" for computer programs that experience life or consciousness. [a] On the other hand, weak AI (or narrow AI) has the ability to resolve one particular problem however lacks general cognitive abilities. [22] [19] Some academic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the exact same sense as human beings. [a]
Related principles include synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical kind of AGI that is much more usually intelligent than human beings, [23] while the concept of transformative AI associates with AI having a large influence on society, for example, similar to the agricultural or commercial revolution. [24]
A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They define five levels of AGI: emerging, competent, professional, virtuoso, and superhuman. For example, a qualified AGI is defined as an AI that outperforms 50% of knowledgeable grownups in a vast array of non-physical tasks, and a superhuman AGI (i.e. an artificial superintelligence) is similarly specified however with a threshold of 100%. They consider large language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have actually been proposed. One of the leading propositions is the Turing test. However, there are other well-known definitions, and some scientists disagree with the more popular approaches. [b]
Intelligence traits
Researchers generally hold that intelligence is required to do all of the following: [27]
reason, use method, solve puzzles, and make judgments under unpredictability
represent understanding, including sound judgment knowledge
plan
discover
- communicate in natural language
- if necessary, integrate these skills in conclusion of any provided objective
Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and choice making) consider extra qualities such as creativity (the capability to form novel psychological images and concepts) [28] and autonomy. [29]
Computer-based systems that show a lot of these capabilities exist (e.g. see computational imagination, automated reasoning, choice support system, robotic, evolutionary calculation, intelligent agent). There is dispute about whether contemporary AI systems possess them to an adequate degree.
Physical traits
Other capabilities are thought about desirable in smart systems, as they may impact intelligence or help in its expression. These consist of: [30]
- the ability to sense (e.g. see, hear, etc), and - the capability to act (e.g. move and manipulate objects, modification place to explore, etc).
This consists of the ability to find and complexityzoo.net react to risk. [31]
Although the ability to sense (e.g. see, hear, etc) and the capability to act (e.g. move and manipulate things, modification place to explore, etc) can be preferable for some smart systems, [30] these physical capabilities are not strictly required for an entity to qualify as AGI-particularly under the thesis that large language models (LLMs) might currently be or become AGI. Even from a less optimistic perspective on LLMs, there is no firm requirement for an AGI to have a human-like kind; being a silicon-based computational system is enough, provided it can process input (language) from the external world in place of human senses. This interpretation aligns with the understanding that AGI has never ever been proscribed a specific physical embodiment and thus does not require a capacity for locomotion or conventional "eyes and ears". [32]
Tests for human-level AGI
Several tests meant to verify human-level AGI have been thought about, including: [33] [34]
The idea of the test is that the maker needs to attempt and pretend to be a male, by addressing concerns put to it, and it will only pass if the pretence is reasonably persuading. A significant portion of a jury, who ought to not be skilled about makers, need to be taken in by the pretence. [37]
AI-complete problems
An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to resolve it, one would require to implement AGI, since the service is beyond the capabilities of a purpose-specific algorithm. [47]
There are numerous problems that have been conjectured to require basic intelligence to solve as well as people. Examples include computer system vision, natural language understanding, and handling unforeseen situations while resolving any real-world issue. [48] Even a specific job like translation requires a maker to read and write in both languages, follow the author's argument (factor), understand the context (knowledge), and faithfully reproduce the author's initial intent (social intelligence). All of these issues need to be solved all at once in order to reach human-level device performance.
However, much of these jobs can now be carried out by modern-day large language designs. According to Stanford University's 2024 AI index, AI has reached human-level efficiency on lots of criteria for checking out comprehension and visual reasoning. [49]
History
Classical AI
Modern AI research study began in the mid-1950s. [50] The very first generation of AI researchers were persuaded that synthetic general intelligence was possible which it would exist in simply a couple of decades. [51] AI pioneer Herbert A. Simon wrote in 1965: "machines will be capable, within twenty years, of doing any work a male can do." [52]
Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists believed they might develop by the year 2001. AI pioneer Marvin Minsky was an expert [53] on the task of making HAL 9000 as practical as possible according to the agreement predictions of the time. He stated in 1967, "Within a generation ... the issue of producing 'artificial intelligence' will significantly be fixed". [54]
Several classical AI tasks, such as Doug Lenat's Cyc job (that started in 1984), and Allen Newell's Soar job, were directed at AGI.
However, in the early 1970s, it ended up being obvious that researchers had actually grossly underestimated the difficulty of the job. Funding companies became doubtful of AGI and put scientists under increasing pressure to produce beneficial "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI objectives like "bring on a table talk". [58] In reaction to this and the success of expert systems, both industry and federal government pumped cash into the field. [56] [59] However, confidence in AI marvelously collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never satisfied. [60] For the second time in twenty years, AI researchers who anticipated the impending achievement of AGI had actually been mistaken. By the 1990s, AI scientists had a reputation for making vain pledges. They ended up being reluctant to make predictions at all [d] and prevented reference of "human level" expert system for worry of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI attained commercial success and scholastic respectability by concentrating on particular sub-problems where AI can produce verifiable results and commercial applications, such as speech recognition and recommendation algorithms. [63] These "applied AI" systems are now utilized extensively throughout the innovation market, and research study in this vein is heavily funded in both academic community and market. As of 2018 [update], advancement in this field was thought about an emerging trend, and a mature phase was expected to be reached in more than 10 years. [64]
At the millenium, many mainstream AI researchers [65] hoped that strong AI might be established by combining programs that solve numerous sub-problems. Hans Moravec composed in 1988:
I am positive that this bottom-up path to synthetic intelligence will one day satisfy the standard top-down path over half way, ready to offer the real-world skills and the commonsense knowledge that has been so frustratingly elusive in thinking programs. Fully intelligent makers will result when the metaphorical golden spike is driven joining the 2 efforts. [65]
However, even at the time, this was disputed. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by mentioning:
The expectation has actually typically been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way satisfy "bottom-up" (sensory) approaches someplace in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is truly just one feasible path from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer will never ever be reached by this route (or vice versa) - nor is it clear why we must even attempt to reach such a level, since it appears getting there would just amount to uprooting our signs from their intrinsic significances (thereby merely minimizing ourselves to the practical equivalent of a programmable computer). [66]
Modern artificial general intelligence research
The term "synthetic general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a conversation of the implications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the ability to satisfy objectives in a vast array of environments". [68] This type of AGI, identified by the ability to increase a mathematical meaning of intelligence rather than exhibit human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The very first summer school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was offered in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and including a variety of guest lecturers.
Since 2023 [upgrade], a little number of computer system scientists are active in AGI research study, and lots of add to a series of AGI conferences. However, increasingly more scientists are interested in open-ended knowing, [76] [77] which is the idea of allowing AI to constantly find out and innovate like people do.
Feasibility
As of 2023, the advancement and possible achievement of AGI remains a topic of extreme dispute within the AI community. While standard agreement held that AGI was a remote goal, current developments have led some scientists and industry figures to claim that early types of AGI may currently exist. [78] AI pioneer Herbert A. Simon hypothesized in 1965 that "makers will be capable, within twenty years, of doing any work a male can do". This prediction failed to come true. Microsoft co-founder Paul Allen thought that such intelligence is unlikely in the 21st century because it would require "unforeseeable and fundamentally unpredictable developments" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between contemporary computing and human-level synthetic intelligence is as large as the gulf in between existing space flight and practical faster-than-light spaceflight. [80]
A further difficulty is the lack of clearness in specifying what intelligence requires. Does it require awareness? Must it display the capability to set objectives along with pursue them? Is it simply a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are facilities such as planning, reasoning, and causal understanding needed? Does intelligence require explicitly replicating the brain and its specific faculties? Does it need feelings? [81]
Most AI researchers think strong AI can be accomplished in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of attaining strong AI. [82] [83] John McCarthy is among those who think human-level AI will be achieved, however that today level of progress is such that a date can not precisely be predicted. [84] AI professionals' views on the expediency of AGI wax and subside. Four polls performed in 2012 and 2013 suggested that the mean quote among experts for when they would be 50% positive AGI would get here was 2040 to 2050, depending on the poll, with the mean being 2081. Of the specialists, 16.5% answered with "never" when asked the exact same question but with a 90% self-confidence rather. [85] [86] Further current AGI progress factors to consider can be discovered above Tests for verifying human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year time frame there is a strong bias towards forecasting the arrival of human-level AI as between 15 and 25 years from the time the forecast was made". They examined 95 predictions made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft researchers released a comprehensive examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, we believe that it might fairly be deemed an early (yet still insufficient) variation of a synthetic basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outshines 99% of people on the Torrance tests of innovative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a substantial level of basic intelligence has actually currently been accomplished with frontier models. They wrote that hesitation to this view originates from 4 main factors: a "healthy skepticism about metrics for AGI", an "ideological commitment to alternative AI theories or techniques", a "commitment to human (or biological) exceptionalism", or a "concern about the financial ramifications of AGI". [91]
2023 also marked the development of large multimodal designs (large language models efficient in processing or creating multiple modalities such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the very first of a series of designs that "invest more time thinking before they react". According to Mira Murati, this capability to believe before responding represents a brand-new, extra paradigm. It improves design outputs by spending more computing power when generating the response, whereas the design scaling paradigm enhances outputs by increasing the model size, training data and training calculate power. [93] [94]
An OpenAI employee, Vahid Kazemi, claimed in 2024 that the company had actually achieved AGI, stating, "In my opinion, we have actually currently accomplished AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any job", it is "much better than the majority of people at the majority of jobs." He likewise dealt with criticisms that big language models (LLMs) merely follow predefined patterns, comparing their knowing process to the scientific method of observing, assuming, and verifying. These statements have actually stimulated argument, as they depend on a broad and non-traditional meaning of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models show exceptional flexibility, they might not totally fulfill this requirement. Notably, Kazemi's comments came shortly after OpenAI got rid of "AGI" from the regards to its collaboration with Microsoft, prompting speculation about the company's strategic intentions. [95]
Timescales
Progress in expert system has historically gone through periods of rapid development separated by durations when development appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software or both to develop area for additional development. [82] [98] [99] For example, the hardware offered in the twentieth century was not sufficient to carry out deep knowing, which needs big numbers of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel states that quotes of the time needed before a truly flexible AGI is developed vary from ten years to over a century. Since 2007 [upgrade], the agreement in the AGI research community seemed to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was plausible. [103] Mainstream AI researchers have given a wide variety of viewpoints on whether development will be this quick. A 2012 meta-analysis of 95 such opinions found a bias towards anticipating that the start of AGI would take place within 16-26 years for modern and historic forecasts alike. That paper has actually been criticized for how it classified opinions as expert or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, significantly much better than the second-best entry's rate of 26.3% (the traditional method utilized a weighted sum of scores from various pre-defined classifiers). [105] AlexNet was concerned as the initial ground-breaker of the current deep learning wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on publicly offered and freely available weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old kid in very first grade. A grownup concerns about 100 on average. Similar tests were carried out in 2014, with the IQ score reaching an optimum value of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model efficient in carrying out many varied tasks without specific training. According to Gary Grossman in a VentureBeat article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]
In the same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI requested changes to the chatbot to adhere to their safety standards; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system efficient in performing more than 600 different tasks. [110]
In 2023, Microsoft Research published a study on an early variation of OpenAI's GPT-4, contending that it showed more basic intelligence than previous AI models and demonstrated human-level efficiency in jobs spanning several domains, such as mathematics, coding, and law. This research study sparked a debate on whether GPT-4 might be considered an early, insufficient variation of artificial general intelligence, stressing the requirement for additional expedition and evaluation of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton specified that: [112]
The idea that this stuff might actually get smarter than people - a few individuals believed that, [...] But the majority of people believed it was method off. And I thought it was way off. I thought it was 30 to 50 years and even longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis likewise stated that "The development in the last couple of years has been quite amazing", which he sees no reason why it would slow down, expecting AGI within a years and even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within five years, AI would can passing any test at least in addition to human beings. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI staff member, approximated AGI by 2027 to be "noticeably possible". [115]
Whole brain emulation
While the development of transformer models like in ChatGPT is thought about the most promising path to AGI, [116] [117] entire brain emulation can serve as an alternative technique. With whole brain simulation, a brain model is developed by scanning and mapping a biological brain in detail, and then copying and replicating it on a computer system or another computational gadget. The simulation design must be sufficiently loyal to the original, so that it acts in virtually the exact same way as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research study purposes. It has actually been talked about in synthetic intelligence research [103] as an approach to strong AI. Neuroimaging technologies that might provide the needed detailed understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of sufficient quality will appear on a comparable timescale to the computing power required to emulate it.
Early estimates
For low-level brain simulation, a really effective cluster of computers or GPUs would be required, given the massive quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number declines with age, stabilizing by adulthood. Estimates vary for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based on a simple switch design for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at different estimates for the hardware needed to equate to the human brain and embraced a figure of 1016 calculations per second (cps). [e] (For contrast, if a "computation" was equivalent to one "floating-point operation" - a procedure utilized to rate current supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, accomplished in 2011, while 1018 was accomplished in 2022.) He utilized this figure to anticipate the needed hardware would be readily available sometime in between 2015 and 2025, if the exponential growth in computer power at the time of composing continued.
Current research
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has established an especially in-depth and publicly available atlas of the human brain. [124] In 2023, researchers from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The artificial nerve cell design presumed by Kurzweil and utilized in numerous existing artificial neural network applications is easy compared to biological nerve cells. A brain simulation would likely need to capture the comprehensive cellular behaviour of biological neurons, presently comprehended only in broad outline. The overhead presented by full modeling of the biological, chemical, and physical information of neural behaviour (particularly on a molecular scale) would require computational powers numerous orders of magnitude bigger than Kurzweil's quote. In addition, the estimates do not account for glial cells, which are understood to contribute in cognitive procedures. [125]
An essential criticism of the simulated brain approach originates from embodied cognition theory which asserts that human embodiment is an important element of human intelligence and is essential to ground meaning. [126] [127] If this theory is appropriate, any totally functional brain model will need to incorporate more than simply the neurons (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an option, however it is unknown whether this would be adequate.
Philosophical viewpoint
"Strong AI" as specified in philosophy
In 1980, thinker John Searle created the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction between two hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "awareness". Weak AI hypothesis: An expert system system can (just) act like it believes and has a mind and consciousness.
The first one he called "strong" due to the fact that it makes a more powerful declaration: it assumes something unique has actually taken place to the maker that exceeds those abilities that we can check. The behaviour of a "weak AI" device would be specifically identical to a "strong AI" machine, however the latter would also have subjective conscious experience. This use is likewise typical in scholastic AI research and textbooks. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil use the term "strong AI" to imply "human level artificial general intelligence". [102] This is not the like Searle's strong AI, unless it is presumed that awareness is needed for human-level AGI. Academic thinkers such as Searle do not believe that holds true, and to most artificial intelligence researchers the question is out-of-scope. [130]
Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to know if it actually has mind - indeed, there would be no chance to inform. For AI research study, Searle's "weak AI hypothesis" is comparable to the statement "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for approved, and do not care about the strong AI hypothesis." [130] Thus, for academic AI research, "Strong AI" and "AGI" are 2 different things.
Consciousness
Consciousness can have numerous significances, and some aspects play considerable functions in science fiction and the ethics of expert system:
Sentience (or "sensational consciousness"): The capability to "feel" understandings or emotions subjectively, instead of the capability to factor about perceptions. Some philosophers, such as David Chalmers, use the term "awareness" to refer solely to sensational awareness, which is approximately equivalent to sentience. [132] Determining why and how subjective experience develops is referred to as the tough problem of consciousness. [133] Thomas Nagel explained in 1974 that it "seems like" something to be conscious. If we are not mindful, then it does not seem like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer declared that the company's AI chatbot, LaMDA, had actually achieved life, though this claim was widely contested by other experts. [135]
Self-awareness: To have mindful awareness of oneself as a different person, particularly to be purposely knowledgeable about one's own thoughts. This is opposed to just being the "topic of one's thought"-an operating system or debugger is able to be "knowledgeable about itself" (that is, to represent itself in the exact same way it represents everything else)-however this is not what people normally mean when they use the term "self-awareness". [g]
These characteristics have a moral dimension. AI sentience would trigger issues of welfare and legal protection, similarly to animals. [136] Other elements of consciousness associated to cognitive capabilities are likewise relevant to the principle of AI rights. [137] Figuring out how to incorporate advanced AI with existing legal and social frameworks is an emergent concern. [138]
Benefits
AGI could have a variety of applications. If oriented towards such goals, AGI might help reduce different issues worldwide such as hunger, hardship and health problems. [139]
AGI could enhance performance and efficiency in the majority of tasks. For example, in public health, AGI might accelerate medical research, especially versus cancer. [140] It might look after the senior, [141] and democratize access to fast, top quality medical diagnostics. It might provide fun, low-cost and personalized education. [141] The requirement to work to subsist could end up being outdated if the wealth produced is effectively redistributed. [141] [142] This also raises the question of the place of people in a radically automated society.
AGI might also assist to make reasonable choices, and to anticipate and avoid catastrophes. It could likewise help to profit of potentially disastrous innovations such as nanotechnology or environment engineering, while avoiding the associated dangers. [143] If an AGI's main goal is to avoid existential disasters such as human termination (which might be challenging if the Vulnerable World Hypothesis turns out to be true), [144] it could take steps to considerably minimize the dangers [143] while lessening the impact of these steps on our lifestyle.
Risks
Existential threats
AGI might represent multiple kinds of existential threat, which are dangers that threaten "the early extinction of Earth-originating smart life or the long-term and drastic destruction of its capacity for desirable future advancement". [145] The threat of human extinction from AGI has been the topic of numerous disputes, however there is likewise the possibility that the advancement of AGI would result in a completely flawed future. Notably, it might be used to spread and maintain the set of values of whoever establishes it. If mankind still has ethical blind areas similar to slavery in the past, AGI may irreversibly entrench it, preventing moral development. [146] Furthermore, AGI could assist in mass monitoring and indoctrination, which might be utilized to produce a steady repressive around the world totalitarian routine. [147] [148] There is likewise a danger for the machines themselves. If devices that are sentient or otherwise deserving of moral consideration are mass produced in the future, participating in a civilizational path that forever overlooks their welfare and interests could be an existential disaster. [149] [150] Considering how much AGI could enhance humanity's future and help in reducing other existential risks, Toby Ord calls these existential risks "an argument for continuing with due caution", not for "deserting AI". [147]
Risk of loss of control and human extinction
The thesis that AI presents an existential threat for human beings, and that this danger requires more attention, is controversial but has been backed in 2023 by many public figures, AI researchers and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized prevalent indifference:
So, dealing with possible futures of incalculable advantages and risks, the professionals are definitely doing whatever possible to ensure the very best outcome, right? Wrong. If a superior alien civilisation sent us a message stating, 'We'll arrive in a few decades,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]
The prospective fate of humanity has in some cases been compared to the fate of gorillas threatened by human activities. The comparison specifies that higher intelligence allowed humankind to control gorillas, which are now susceptible in manner ins which they might not have actually expected. As a result, the gorilla has ended up being an endangered species, not out of malice, but just as a civilian casualties from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to control humanity and that we should beware not to anthropomorphize them and interpret their intents as we would for people. He stated that individuals will not be "clever sufficient to develop super-intelligent devices, yet ridiculously foolish to the point of giving it moronic goals without any safeguards". [155] On the other side, the concept of instrumental merging recommends that almost whatever their goals, smart representatives will have reasons to try to survive and get more power as intermediary steps to achieving these objectives. And that this does not need having emotions. [156]
Many scholars who are concerned about existential danger advocate for more research into fixing the "control issue" to address the concern: what kinds of safeguards, algorithms, or architectures can programmers carry out to maximise the possibility that their recursively-improving AI would continue to behave in a friendly, instead of devastating, manner after it reaches superintelligence? [157] [158] Solving the control issue is complicated by the AI arms race (which could lead to a race to the bottom of security preventative measures in order to launch items before competitors), [159] and making use of AI in weapon systems. [160]
The thesis that AI can position existential threat likewise has detractors. Skeptics normally state that AGI is not likely in the short-term, or that issues about AGI distract from other concerns related to existing AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for lots of people beyond the technology industry, existing chatbots and LLMs are currently perceived as though they were AGI, resulting in more misconception and fear. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence changing an unreasonable belief in an omnipotent God. [163] Some scientists believe that the interaction projects on AI existential risk by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at effort at regulative capture and to inflate interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other market leaders and researchers, released a joint statement asserting that "Mitigating the danger of termination from AI need to be a global top priority along with other societal-scale risks such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI estimated that "80% of the U.S. labor force might have at least 10% of their work tasks impacted by the intro of LLMs, while around 19% of employees might see at least 50% of their tasks affected". [166] [167] They think about workplace employees to be the most exposed, for instance mathematicians, accountants or web designers. [167] AGI could have a better autonomy, capability to make decisions, to user interface with other computer tools, however likewise to control robotized bodies.
According to Stephen Hawking, the result of automation on the lifestyle will depend upon how the wealth will be rearranged: [142]
Everyone can enjoy a life of glamorous leisure if the machine-produced wealth is shared, or the majority of people can wind up miserably poor if the machine-owners successfully lobby against wealth redistribution. So far, the pattern appears to be toward the 2nd choice, with innovation driving ever-increasing inequality
Elon Musk thinks about that the automation of society will need federal governments to embrace a universal fundamental income. [168]
See likewise
Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain AI impact AI safety - Research area on making AI safe and advantageous AI alignment - AI conformance to the intended objective A.I. Rising - 2018 film directed by Lazar Bodroža Expert system Automated maker knowing - Process of automating the application of artificial intelligence BRAIN Initiative - Collaborative public-private research study initiative announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General game playing - Ability of synthetic intelligence to play different games Generative expert system - AI system capable of producing content in reaction to prompts Human Brain Project - Scientific research job Intelligence amplification - Use of information technology to enhance human intelligence (IA). Machine ethics - Moral behaviours of manufactured machines. Moravec's paradox. Multi-task knowing - Solving several device finding out tasks at the exact same time. Neural scaling law - Statistical law in artificial intelligence. Outline of expert system - Overview of and topical guide to synthetic intelligence. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or kind of synthetic intelligence. Transfer knowing - Artificial intelligence technique. Loebner Prize - Annual AI competition. Hardware for synthetic intelligence - Hardware specially designed and optimized for expert system. Weak synthetic intelligence - Form of synthetic intelligence.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the academic meaning of "strong AI" and weak AI in the post Chinese space. ^ AI creator John McCarthy composes: "we can not yet define in general what sort of computational procedures we wish to call intelligent. " [26] (For a conversation of some definitions of intelligence utilized by expert system scientists, see philosophy of expert system.). ^ The Lighthill report specifically slammed AI's "grandiose objectives" and led the taking apart of AI research in England. [55] In the U.S., DARPA became figured out to money just "mission-oriented direct research, rather than basic undirected research". [56] [57] ^ As AI creator John McCarthy composes "it would be a fantastic relief to the rest of the employees in AI if the creators of brand-new basic formalisms would express their hopes in a more guarded form than has actually in some cases been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil introduced. ^ As defined in a standard AI book: "The assertion that machines might perhaps act intelligently (or, perhaps much better, act as if they were intelligent) is called the 'weak AI' hypothesis by theorists, and the assertion that machines that do so are in fact believing (instead of replicating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to carry out a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to make sure that artificial basic intelligence advantages all of humanity. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new objective is developing artificial basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were determined as being active in 2020. ^ a b c "AI timelines: What do professionals in synthetic intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI pioneer Geoffrey Hinton stops Google and cautions of threat ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can avoid the bad actors from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York City Times. The real danger is not AI itself however the method we release it. ^ "Impressed by synthetic intelligence? Experts state AGI is following, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could posture existential dangers to mankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last creation that humankind requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the threat of termination from AI ought to be an international concern. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals alert of risk of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from producing devices that can outthink us in general ways. ^ LeCun, Yann (June 2023). "AGI does not provide an existential threat". Medium. There is no factor to fear AI as an existential danger. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "machine intelligence with the full variety of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is transforming our world - it is on everyone to make certain that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of smart traits is based upon the subjects covered by major AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we think: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The concept of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reevaluated: The concept of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine kid - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists challenge whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing whatever from the bar examination to AP Biology. Here's a list of difficult examinations both AI versions have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested evaluating an AI chatbot's ability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced quote in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), priced estimate in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York City Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software application engineers avoided the term expert system for fear of being deemed wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of machine intelligence: Despite progress in machine intelligence, synthetic basic intelligence is still a major obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not develop into a Frankenstein's monster". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general artificial intelligence will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us utopia or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in synthetic intelligence: A survey of skilled viewpoint. In Fundamental issues of synthetic intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as smart as Siri - however a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're getting in the AI golden zone in between narrow and basic AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are already seeing an early example of an AGI system in the recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is arguable, however the agreement is that it is not AGI. ... If nothing else, GPT-3 informs us there is a happy medium between narrow and basic AI. ^ Quach, Katyanna. "A developer constructed an AI chatbot utilizing GPT-3 that helped a male speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can perform over 600 tasks, from playing games to managing robotics", TechCrunch, archived from the original on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could match human intelligence in 'simply a couple of years,' says CEO of Google's main A.I. research study laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI could pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone appears to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study task maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A wide variety of views in current research, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How submitting our minds to a computer may end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced estimate in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable synthetic intelligence for interest by the field about why a program acts the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the company's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense surpass benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Gain from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, threats, strategies (Reprinted with corrections 2017 ed.). Oxford, UK; New York, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that human beings will ruin ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security danger' to Australia, Senate inquiry states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the ramifications of synthetic intelligence - but are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI". The interesting Facebook argument between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI risk: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race threats spiralling out of control, report warns". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over hazard postured but artificial intelligence can not be ignored". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking fears over AI, alert researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder says huge tech is lying about AI extinction danger". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market impact capacity of large language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of employees might see their tasks affected by AI. These are the jobs most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we require universal basic income because 'in the future, physical work will be a choice'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Look For Artificial Intelligence. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic general intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, oke.zone and McDermott's review of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, recovered 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, retrieved 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Point of view, archived from the initial on 17 August 2007, retrieved 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Expert System: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The ultimate effort is to make computer programs that can resolve issues and achieve objectives in the world along with people. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, retrieved 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, obtained 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Expert System", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, retrieved 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Logical Approach, New York City: Oxford University Press, archived from the original on 25 July 2009, retrieved 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, retrieved 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, obtained 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, obtained 4 September 2013 - via ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, recovered 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what may be called "Dyson's Law") that "Any system easy adequate to be understandable will not be made complex enough to behave wisely, while any system complicated enough to behave wisely will be too complicated to comprehend." (p. 197.) Computer researcher Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead basic foolish. They work, however they work by strength." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Will" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from machines. For biological animals, factor and purpose originate from acting worldwide and experiencing the effects. Expert systems - disembodied, strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably expect that those who intend to get abundant from AI are going to have the interests of the rest people close at heart,' ... writes [Gary Marcus] 'We can't count on governments driven by campaign financing contributions [from tech business] to push back.' ... Marcus details the demands that people ought to make from their federal governments and the tech companies. They consist of openness on how AI systems work; payment for individuals if their data [are] used to train LLMs (big language model) s and the right to grant this usage; and the ability to hold tech companies accountable for the damages they cause by removing Section 230, enforcing money penalites, and passing stricter product liability laws ... Marcus also suggests ... that a new, AI-specific federal firm, similar to the FDA, the FCC, or the FTC, may offer the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... recommends ... develop [ing] a professional licensing routine for engineers that would work in a similar way to medical licenses, malpractice matches, and the Hippocratic oath in medication. 'What if, like medical professionals,' she asks ..., 'AI engineers also pledged to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in artificial intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has baffled people for decades, reveals the limitations of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competition has exposed that although NLP (natural-language processing) models can unbelievable tasks, their capabilities are very much limited by the quantity of context they get. This [...] could trigger [problems] for scientists who wish to utilize them to do things such as evaluate ancient languages. Sometimes, there are couple of historic records on long-gone civilizations to function as training data for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to generate fake videos equivalent from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we imply reasonable videos produced using expert system that really trick people, then they hardly exist. The fakes aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in general, morphomics.science operating in our media as counterfeited evidence. Their function better looks like that of cartoons, particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We should prevent humanizing machine-learning models utilized in clinical research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a machine a conversation?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of artificial basic intelligence are stymmied by the usual problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, provided and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead cops to neglect contradictory evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test however showed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at jobs that require genuine humanlike reasoning or an understanding of the physical and social world ... ChatGPT appeared unable to reason rationally and attempted to depend on its large database of ... realities originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are powerful but unreliable. Rules-based systems can not deal with scenarios their programmers did not anticipate. Learning systems are limited by the information on which they were trained. AI failures have actually already caused tragedy. Advanced auto-pilot features in automobiles, although they perform well in some circumstances, have driven cars without alerting into trucks, concrete barriers, and parked cars and trucks. In the wrong scenario, AI systems go from supersmart to superdumb in an instant. When an enemy is attempting to control and hack an AI system, the risks are even higher." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by brand-new technologies but depend on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.