Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
I idesys
  • Project overview
    • Project overview
    • Details
    • Activity
  • Issues 24
    • Issues 24
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Incidents
    • Environments
  • Packages & Registries
    • Packages & Registries
    • Package Registry
  • Analytics
    • Analytics
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
Collapse sidebar
  • Andrew Millington
  • idesys
  • Issues
  • #7

Closed
Open
Created Feb 26, 2025 by Andrew Millington@andrewmillingtMaintainer

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, together with the distilled variations varying from 1.5 to 70 billion specifications to develop, experiment, and properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to release the distilled variations of the designs as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) established by DeepSeek AI that uses support learning to improve thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A crucial distinguishing feature is its reinforcement learning (RL) step, which was utilized to improve the model's actions beyond the basic pre-training and tweak procedure. By including RL, DeepSeek-R1 can adapt more effectively to user feedback and goals, eventually improving both importance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) technique, suggesting it's equipped to break down complex inquiries and factor through them in a detailed way. This guided reasoning procedure allows the model to produce more accurate, transparent, and detailed answers. This design combines RL-based fine-tuning with CoT capabilities, aiming to produce structured responses while focusing on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has actually recorded the market's attention as a versatile text-generation design that can be integrated into various workflows such as agents, rational thinking and data analysis tasks.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture allows activation of 37 billion criteria, making it possible for efficient inference by routing questions to the most appropriate specialist "clusters." This technique allows the design to focus on different problem domains while maintaining overall efficiency. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge instance to release the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning capabilities of the main R1 design to more efficient architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller, more effective models to imitate the habits and reasoning patterns of the larger DeepSeek-R1 design, using it as an instructor design.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest deploying this model with guardrails in location. In this blog site, we will utilize Amazon Bedrock Guardrails to present safeguards, prevent harmful material, and evaluate models against crucial security requirements. At the time of composing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop multiple guardrails tailored to different usage cases and apply them to the DeepSeek-R1 model, improving user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you require access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To ask for a limitation boost, develop a limitation boost demand and connect to your account group.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For directions, see Establish authorizations to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to introduce safeguards, prevent hazardous content, and examine designs against crucial safety criteria. You can execute security steps for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to examine user inputs and model reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The general flow involves the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After getting the design's output, another guardrail check is applied. If the output passes this last check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following sections show inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, select Model catalog under Foundation designs in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and pick the DeepSeek-R1 design.

The model detail page offers necessary details about the design's capabilities, prices structure, and application guidelines. You can discover detailed usage guidelines, consisting of sample API calls and code bits for combination. The design supports different text generation tasks, consisting of material creation, code generation, and concern answering, utilizing its support learning optimization and CoT reasoning abilities. The page likewise includes implementation alternatives and licensing details to help you begin with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, pick Deploy.

You will be triggered to set up the implementation details for wakewiki.de DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of instances, go into a variety of circumstances (between 1-100). 6. For example type, choose your circumstances type. For optimum performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended. Optionally, you can set up innovative security and facilities settings, consisting of virtual private cloud (VPC) networking, service role permissions, and encryption settings. For the majority of use cases, the default settings will work well. However, for production releases, you might wish to examine these settings to align with your company's security and compliance requirements. 7. Choose Deploy to begin using the design.

When the release is total, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock playground. 8. Choose Open in playground to access an interactive interface where you can try out different triggers and adjust model parameters like temperature and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for ideal results. For instance, material for reasoning.

This is an exceptional way to explore the design's reasoning and text generation abilities before integrating it into your applications. The playground offers instant feedback, assisting you comprehend how the design reacts to various inputs and letting you fine-tune your triggers for optimal results.

You can rapidly evaluate the design in the playground through the UI. However, to conjure up the deployed model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to carry out inference utilizing a released DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have created the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime client, configures reasoning specifications, and sends out a demand to create text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML services that you can deploy with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your information, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart uses 2 practical methods: utilizing the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both approaches to assist you select the method that finest suits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be prompted to produce a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The model internet browser shows available designs, with details like the company name and design abilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 design card. Each model card shows essential details, consisting of:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if suitable), showing that this model can be signed up with Amazon Bedrock, allowing you to utilize Amazon Bedrock APIs to invoke the design

    5. Choose the design card to see the model details page.

    The design details page includes the following details:

    - The design name and company details. Deploy button to release the design. About and Notebooks tabs with detailed details

    The About tab consists of crucial details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage standards

    Before you release the design, it's recommended to examine the model details and license terms to confirm compatibility with your use case.

    6. Choose Deploy to proceed with deployment.

    7. For Endpoint name, utilize the instantly created name or develop a custom-made one.
  1. For Instance type ¸ select an instance type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, enter the variety of instances (default: 1). Selecting appropriate circumstances types and counts is crucial for expense and performance optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time inference is picked by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for precision. For this model, we highly advise sticking to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to deploy the design.

    The release process can take a number of minutes to complete.

    When deployment is total, your endpoint status will change to InService. At this point, the design is ready to accept inference demands through the endpoint. You can keep track of the implementation progress on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the release is total, you can invoke the model utilizing a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To start with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the needed AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for inference programmatically. The code for deploying the model is provided in the Github here. You can clone the notebook and range from .

    You can run extra demands against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Clean up

    To avoid unwanted charges, complete the actions in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you released the design utilizing Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace deployments.
  5. In the Managed deployments area, locate the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're deleting the proper release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and release the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, garagesale.es Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies build innovative options utilizing AWS services and accelerated calculate. Currently, he is focused on establishing strategies for bytes-the-dust.com fine-tuning and enhancing the reasoning performance of large language designs. In his free time, Vivek takes pleasure in hiking, viewing movies, and attempting different cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about building options that assist consumers accelerate their AI journey and unlock company worth.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking